The physwal parameters appearing in the similarity criteria and the formulas have the following mean-
ing and dimensions: c, specific heat, [L] 2[TI"%[@]!; R, stress, compresswe or tensile strength, or shear
stress, [M][L]"![T]~%; G, shear modulus, [M][L]"l[T]‘Z; p, density, [M}{L]™%; A, thermal conductivity,
[MI[L][T]-3[®]"!; g, acceleration due togravity, [L][T]-% K, elasticity coefficient, [M][L]~![T]-%; E, Young's
modulus, [M){L]-![T]"2; u, Poisson's ratio; b, a parameter, [L]¥2; @, a coefficient, [M]"n[L]n-}/Z[T]Zn n, a
power factor; o, stress or pressure, [M][L]~![T]-%; v, specific welght [M][LI2[T]-%; e, relative deformation;
k, rigidity, [M] [T]‘ ; Q, heat transmitted through the surface normal to the wall in the direction of decrease
per unit time, [M][L](T]~%; F, area, [L]%; &, wall thickness; fL]; t,—ty, temperature difference between op-
posite surfaces of the wall; °C, [@]; R,, grade of concrete, [M}[L]~![T]"%; Re, cement activity, [M][L]"T]?;
C, cement mass, [M]; W, water mass, [M]; E, initial elasticity modulus of concrete under compression and
tension, [M][L]"}[T]-2; «, an index, [M]{L]~![T}-!. The symbols in square brackets denote dimensions in SI
units: [M], mass, kg; [L], length, m; [T], time, sec; [®], temperature, deg.

Thus, the equations proposed—Eqgs. (9), (12), (15), and (16) in general form and Eqgs. (13), (14), (17), and
(18) for heavy concretes— characterizing the functional relations between a series of physicomechanical param-
eters of both mixtures and artificial constructional conglomerates, may be used to determine the basic physico-
mechanical and thermotechnical parameters of ACC and their mixtures.
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USE OF FINITE-PENETRATION-DEPTH METHOD TO
CALCULATE THE HEATING OF A PLANE PLATE
UNDER THE ACTION OF A RADIANT HEAT FLUX

V. M. Borishanskii,* M. A. Gotovskii, UDC 536.24.02
N. V. Mizonov, and V. N. Fromzel!

Using the finite-penetration-depth method, a solution is obtained to the problem of plate heat-
ing a radiant flux. The results are compared with a numerical solution.

The heat-conduction problem with Stefan— Boltzmann boundary conditions is of considerable difficulty for
analytic consideration, and requires linearization of the boundary conditions, or the use of numercial methods
f11.

Below, the solution of one problem of this type by the finite-penetration-depth method [2, 3], an analog of
the integral methods of boundary-linear theory, is considered. The basic idea is that it may be assumed, with
sufficient accuracy for practical purposes, that heat penetrates into a heated body only to a finite depth, which
is known as the heated layer. Following [2, 3], the heat-conduction equation for an infinite plane plate
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Jt dx2

is considered, with the initial condition t=t,. Assume that at the boundary of the heated layer the following con-
dition is satisfied

ot

2Ll -=0. (2)
dx

x=A

tlx:A =l

Integrating Eq. (1) with respect to x from 0 to 4, it is found that

A jA
4 “ tdx —t,A } =a 9
dr 5 dx

3)

B

It is assumed that the temperature distribution inside the heated layer may be approximated by the quad-
ratic parabola

Go .
f =1 — Ay, 4)
o T A (’f )

where g, is the heat flux at the plane surface.

Using Eqgs. (2) and (4), Eq. (3) may be brought to the form [3]

o [ 9
A dr 6A

)
o

Now consider the case when the heat flux q; at the plate surface is given by the Stefan— Boltzmann law

g \*
7= 49| [ Tm “_<T°+ 2 )} (6)
100 100

where Ty, is the absolute radiation temperature; T, =t,+ 273°; T;+ q,4/22 is the absolute surface tempera..
ture (x= 0) according to Eq. (4).

The following expression for A is obtained from Eq. (6)

4 1/4 2
A={1oo[( Ty )— %o ~T0}2—". (M)
100 4.9¢re Go
Substituting this expression intoc Eq. (5) yields
Tm 4 g, 174 2
100 r( ) — . —T }
3 ag _ g_{ [\ 100 4.9¢, ) . ®)
2 2 dt o
The following notation is introduced .
Tm \* T
= /4.98 ——r = el 5
Y= e ( 100) P T,
T \ 4
3a| 4.9 m }
[ *© ( 100 /
Z = 5 T
20T,

The quantity y characterizes the change in heat flux over time. Below, it is the change in this quantity which
will mainly be of interest.

In the dimensionless variables y, z, Eq. (8) takes the form

g4 1 ) i (9)
dz Y

with the initial condition
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y=1—p wienz =G, (10)

There exists an analytic solution to Eq. (9), though it is somewhat cumbersome in form

=t %%—"Jr Q:y (1)
%[“;;W4+(V;f”4+§5 }f%:%%;+ retg(1—4)'" |+ F- 4.
where C is a constant of integration
C= | S R e et a2
|-y e

Because it is so cumbersome, Eq. (11) is not suitable for practical calculations. To obtain the solution in more
expedient form, the two limiting cases may be considered.

A. The Case of Small z. Here Eq. (9) may be written, taking Eq. (10) into account, in the approximate
form

R () Ml ' (13)
dz 1 — pe ’
which may be integrated to give
y=1—B+1—pyy z]-. (14)

This solution satisfies the initial condition in Eq. (10);

B. The Case of Small y (large z). Inthecase the relation (1—y)?~1-ny is used and, in addition, it may
be shown that Eq. (12) can be approximated with high accuracy by the simple formula

C=py2. @15)

The solution in Eq. (11) then simplifies

2(1 _ ﬂ) R (16)

l/ 82—{—1—————452

In Fig. 1, curves of y(z) plotted from Eqs. (14) and (16) for 8 = 0, 0.25 are shown. The most expedient
interpolation between the curves of Eqs. (14) and (16) for intermediate values of z is given by the tangent to
these two curves. Thus, for given B, it is sufficient, in order to construct a dimensionless heating curve of the
outer surface, to plot curves according to Eqs. (14) and (16) and draw their common tangent. It is more exped-
ient to find the equation of the tangent for each specific problem than in the general case.

In [4], the results of numerical solution of the problem of the heating of a plate by a radiant heat flux
conduct through the plane x = 0, with the condition of thermoinsulation (8T /@x = 0) at the plane x=h, are given
in nomogram form. The parameters of the nomograms are the dimensionless complexes 8= T/Ty,; Fo=ar/

0 0% g6 0 o 0 z

Fig. 1. Curves of y as a function of z for =0 (a) and 0.25 (b): 1) from
Eq. (14); 2) from Eq. (16); 3) linear interpolation.
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TABLE 1. Comparison of Accurate and Approxi-
mate Solutions

B Fo Bo face Sapprox
0 0,1 1,0 0,36 0,387
0 0,5 1,0 . 0,72 0,728
0 1,0 1,0 0,87 0,862
0 0,1 0,5 0,65 0,642
0 0,5 0,5 0,89 0,838
0 0,1 2,0 0,275 0,274
0 1,0 2,0 0,62 0,72
0,25 0,1 0,5 0,70 0,70
0,25 0,5 0,5 0,90 0,884
0,25 0,1 2,0 0,26 0,337
0,25 1,0 2,0 0,728 0,72

h?; Bo=2\/(4.9-10"%epreT?h. According to the idea of the finite-depth method, the formulas given are valid only
for A=h, which corresponds to Fo<ar/nar=1/n, where n~ 5-10 (when g = const, n= 6). However, if is evident
from a comparison with the accurate solution that the formulas obtained give good agreement up to Fo=1.
Table 1 compares the approximate and accurate values of the surface temperature 6= (Tgur— T/ (Tm—Ty). As
is evident, the agreement between them should be regarded as good. Note that the "accurate" values are taken
from nomograms, which may lead to pronounced errors in determining 6, and hence also the heat flux at the
surface. Interpolation in 8 is especially inconvenient when using nomograms. In some cases, therefore, the
approximate formulas obtained may be found more expedient for practical calculations than a numerical solu-~
tion in the form of nomograms.

NOTATION

t, temperature; T, absolute temperature; A, g, thermal conductivity and diffusivity of plate material;
gre, reduced emissivity; x, coordinate; q, specific heat flux; 7, time,.
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